I know right? Have any of these posters met a baby? They’re too short for this.
I know right? Have any of these posters met a baby? They’re too short for this.
Yes exactly. Without writing too much more, I’ll just say I wish it had been done a bit different, and there’s no shame in critiquing a finished product for what it is (within reason. I’m not a huge fandom person so I don’t really know how toxic this all got for some people). It’s still quite good.
Yeah. Valid. I’m just going to leave it up and take my downvotes.
I’m sorry to do this but “its a children’s cartoon” isn’t a reason to not think critically of this show. It takes itself VERY seriously and deserves serious thought. We’re not examining the Deep Lore of Spongebob here.
The critique was overblown but its still not wrong. If we weren’t shown the planetary destruction/genocide the Diamonds (the antagonists) were doing, I would agree entirely that people were thinking about a cartoon too hard. But the show makes a point to explore the destruction, the genocides and “human zoo” and its effects. It tells us directly why it happens and who is responsible. It takes it seriously, dwells on it, and then expects us to move on. Its reasonable to ask why the show chose to do this.
Someone chose to write this show this way. We don’t actually need Steven’s mother’s family to be literal fascists (they are the heads of an alien government if you did not watch the series) on top of being emotionally constipated and abusive. Pick one plot thread or make more characters. Send the Space Nazis to Space Jail for their Space Crimes.
There’s plenty of good in the show, though. That’s why people spend so much energy complaining about it. If it were simply bad people would have forgotten about it immediately. The haters are fans whether they will admit it or not.
The problems with Steven Universe are similar to the reasons I hated Harry Potter as a kid. I knew what slavery was, and I knew Hermione was right to fight it even when the author tried to frame her as a silly busy-body. It wasn’t even the only problem I had with the series as a kid, just the last straw. Kids are thoughtful and deserve good media.
(Steven universe is better than that series, just an observation)
Yes, thanks for catching my errors.
I wrote my comment too hastily, you are correct. My comment has been edited, probably while you were typing yours.
Ah yep, I wrote my reply too hastily. It is fixed (Edit: I also missed where it specified b is an integer).
(edit: I typed this up not as a response to OP, but for anyone who was curious about this but didn’t remember or never learned enough math to solve this for themselves. It had errors but I fixed them (I think, I just woke up and I’m tired of re-reading this comment). Sharing is imperative, and not everyone has had the chance to develop an appreciation for math).
Here I come to explain the joke.
The question asks for what values of b produce no real solutions.
Quadratics (this is the type of equation this is) have two, one or no real real roots. (If we set x to some arbitrary number and the equation is equal to zero, we say x is a root of the equation. A real number is anything we traditionally call a number, like 2, 1/4, -248957.666667 and pi).
So we need to find where it has only one real solution. Quadratics of the form (x-k)^2 = 0 have only one real solution, that solution is k.
So, since 169 = 13^2 we can easily find the b that produces this (this part isn’t necessary as part of the solution, I include it in case it helps someone understand):
-1(x-13)^2 = 0
-1(x^2 -26x + 169) = 0
-x^2 +26x - 169 = 0
If we apply the quadratic formula, we can find what values of b produce imaginary roots. I’m not going to type the whole thing out, we just need to know what is happening under the “square root” part of the quadratic formula, the radicand:
sqrt(b^2 - 4 * -1 * 169)
sqrt(b^2 - 676)
sqrt(676) is 26, by the way. So any value between 0 and 26 (or 0 and -26) will produce a negative value inside the radicand. We can’t take a square root of a negative number (unless you don’t mind that your solution has complex numbers), so any -26 < b < 26 will give us an equation without real solutions.
Therefore, the least value of b is a value of b greater than -26, but less than 0. Since the question specifies it is an integer, that number is -25.
Ok… but is the picture art??? I don’t think anyone would try to argue it is. Miyazaki was specifically talking about how no algorithm can produce art, and I agree.
What makes this screenshot funny is the human element, the performance! It’s all ridiculous.
Glorified Matrix Algebra: [Presents an image of a caked-up gnome]
Internet goblin: “Make it’s butt even bigger.”
Glorified Matrix Algebra: “Sorry, that’s a bridge too far for me.”